Fornitore di parti di valvole in ottone personalizzate tramite investimento dalla Cina conLavorazione CNC, servizi di trattamento superficiale e trattamento termico.
Poiché le leghe a base di rame, l'ottone e il bronzo possono essere trasformati in parti altamente complesse, rendendoli ideali per ilprocesso di fusione di investimento. Le costanti fluttuazioni dei costi possono rendere questi materiali molto sensibili ai prezzi, rendendo gli scarti molto costosi, soprattutto se si considera la lavorazione CNC e/o la forgiatura come processo di produzione per produrre parti di fusione. Il rame puro solitamente non viene fuso. La fusione a cera persa è un metodo di fusione di precisione di dettagli complessi quasi netti utilizzando la replica di modelli in cera. La fusione a cera persa o a cera persa è un processo di formatura dei metalli che in genere utilizza un modello in cera circondato da un guscio di ceramica per realizzare uno stampo in ceramica. Quando il guscio si asciuga, la cera si scioglie lasciando solo lo stampo. Quindi il componente di fusione viene formato versando il metallo fuso nello stampo ceramico.
L'ottone è una lega di rame con lo zinco come elemento principale. All'aumentare del contenuto di zinco, la resistenza e la plasticità della lega aumentano in modo significativo, ma le proprietà meccaniche diminuiranno in modo significativo dopo aver superato il 47%, quindi il contenuto di zinco dell'ottone è inferiore al 47%. Oltre allo zinco, l'ottone fuso contiene spesso elementi leganti come silicio, manganese, alluminio e piombo.
L'ottone fuso ha proprietà meccaniche più elevate del bronzo, ma il prezzo è inferiore al bronzo. L'ottone fuso viene spesso utilizzato per boccole di cuscinetti, boccole, ingranaggi e altre parti resistenti all'usura e valvole e altre parti resistenti alla corrosione. L'ottone ha una forte resistenza all'usura. L'ottone viene spesso utilizzato per realizzare valvole, tubi dell'acqua, tubi di collegamento per condizionatori interni ed esterni e radiatori.
Metodi di ispezione disponibili: test dimensionali mediante CMM, test non distruttivi, composizione chimica, proprietà meccaniche, test di durezza, bilanciamento statico, bilanciamento dinamico, pressione dell'aria e pressione dell'acqua.
A seconda dei diversi materiali leganti utilizzati per realizzare il guscio, la fusione a cera persa può essere suddivisa in fusione di sol di silice e fusione di vetro solubile. Il processo di colata a cera persa con sol di silice presenta tolleranze di colata dimensionale (DCT) e tolleranze di colata geometrica (GCT) migliori rispetto al processo del vetro ad acqua. Tuttavia, anche con lo stesso processo di fusione, il grado di tolleranza sarà diverso da ciascuna lega fusa a causa della diversa colabilità. La nostra fonderia vorrebbe parlare con te se hai richieste speciali sulle tolleranze richieste. Di seguito sono riportati i gradi di tolleranza generali che potremmo raggiungere separatamente sia con i processi di fusione del sol di silice che con quelli del vetro solubile:
- ✔ Grado DCT mediante fusione a cera persa con sol di silice: DCTG4 ~ DCTG6
- ✔ Grado DCT mediante fusione a cera persa in vetro ad acqua: DCTG5 ~ DCTG9
- ✔ Grado GCT mediante fusione a cera persa con sol di silice: GCTG3 ~ GCTG5
- ✔ Grado GCT mediante fusione a cera persa in vetro ad acqua: GCTG3 ~ GCTG5
Materiali perColata di investimentoProcesso presso la fonderia RMC | |||
Categoria | Grado Cina | Grado statunitense | Grado Germania |
Acciaio inossidabile ferritico | 1Cr17, 022Cr12, 10Cr17, | 430, 431, 446, CA-15, CA6N, CA6NM | 1.4000, 1.4005, 1.4008, 1.4016, GX22CrNi17, GX4CrNi13-4 |
Acciaio inossidabile martensitico | 1Cr13, 2Cr13, 3Cr13, 4Cr13, | 410, 420, 430, 440B, 440C | 1.4021, 1.4027, 1.4028, 1.4057, 1.4059, 1.4104, 1.4112, 1.4116, 1.4120, 1.4122, 1.4125 |
Acciaio inossidabile austenitico | 06Cr19Ni10, 022Cr19Ni10, 06Cr25Ni20, 022Cr17Ni12Mo2, 03Cr18Ni16Mo5 | 302, 303, 304, 304L, 316, 316L, 329, CF3, CF3M, CF8, CF8M, CN7M, CN3MN | 1.3960, 1.4301, 1.4305, 1.4306, 1.4308, 1.4313, 1.4321, 1.4401, 1.4403, 1.4404, 1.4405, 1.4406, 1.4408, 1.4409, 1.4435, 1. 4436, 1.4539, 1.4550, 1.4552, 1.4581, 1.4582, 1.4584, |
Acciaio inossidabile indurente per precipitazione | 05Cr15Ni5Cu4Nb, 05Cr17Ni4Cu4Nb | 630, 634, 17-4PH, 15-5PH, CB7Cu-1 | 1.4542 |
Acciaio inossidabile duplex | 022Cr22Ni5Mo3N, 022Cr25Ni6Mo2N | UN 890 1C, UN 890 1A, UN 890 3A, UN 890 4A, UN 890 5A, UN995 1B, UN995 4A, UN995 5A, 2205, 2507 | 1.4460, 1.4462, 1.4468, 1.4469, 1.4517, 1.4770 |
Acciaio ad alto tenore | ZGMn13-1, ZGMn13-3, ZGMn13-5 | B2, B3, B4 | 1.3802, 1.3966, 1.3301, 1.3302 |
Acciaio per utensili | Cr12 | A5, H12, S5 | 1.2344, 1.3343, 1.4528, GXCrMo17, X210Cr13, GX162CrMoV12 |
Acciaio resistente al calore | 20Cr25Ni20, 16Cr23Ni13, 45Cr14Ni14W2Mo | 309, 310, CK20, CH20, HK30 | 1.4826, 1.4828, 1.4855, 1.4865 |
Lega a base di nichel | HASTELLY-C, HASTELLY-X, SUPPER22H, CW-2M, CW-6M, CW-12MW, CX-2MW, HX(66Ni-17Cr), MRE-2, NA-22H, NW-22, M30C, M-35 -1, INCOLOY600, INCOLOY625 | 2.4815, 2.4879, 2.4680 | |
Alluminio Lega | ZL101, ZL102, ZL104 | ASTM A356, ASTM A413, ASTM A360 | G-AlSi7Mg, G-Al12 |
Ottone e Bronzo | H96, H85, H65, HPb63-3, HPb59-1, QSn6.5-0.1, QSn7-0.2 | C21000, C23000, C27000, C34500, C37710, C86500, C87600, C87400, C87800, C52100, C51100 | CuZn5, CuZn15, CuZn35, CuZn36Pb3, CuZn40Pb2, CuSn10P1, CuSn5ZnPb, CuSn5Zn5Pb5 |
Lega a base di cobalto | UMC50, 670, Grado 31 | 2.4778 |